Bayer bids to take over Monsanto

Today, chemical giant Bayer put in a $62bn (£43bn) bid to take over agrochemical company Monsanto, a move which would see the formation of the world’s biggest agricultural supplier.

This would be the biggest ever takeover bid made by a German company, as the country tends towards lower risk expansions, and the offer has caused controversy among Bayer investors. Concerns have arisen because this would mean Bayer’s main interest would be in the agricultural sector, with many investors joining the company because of their pharmaceutical products.

Monsanto itself tried to take over rival company Syngenta last year, but had their offer rejected, and announced plans to cut 3,600 jobs in the aftermath. It’s unclear at the moment how this new merger will affect staff at the company, but many will be hoping the job cuts will be cancelled as Bayer take over.

Whatever the outcome, this and the upcoming merger of Syngenta and ChemChina which is yet to go through, will no doubt have a huge impact on the agrochemical industry in the upcoming years. With big pharma taking a tumble and small and SMEs coming into their own in recent years, the formation of huge chemical companies may prove a risky move. Time will tell.


How will the Queen’s speech affect chemistry in the UK?

Today in the UK parliament officially reopened, with the Queen’s speech being used to set out the government’s new plans. But, with the flurry of new bill and law changes, how will this affect the chemical sciences here?

Luckily, the Royal Society of Chemistry have explained it all for us here. I’ll combine their useful insight with some of my own personal opinions.

There will be a big effort made into the deregulation of higher education in the UK, which may help reduce the red tape involved in the sector, but removing caps of student numbers and giving universities more flexibility is risky business, and may affect the credibility and efficiency of chemistry degrees. I’m sure many of you have heard of the new Teaching Excellence Framework, which sounds good on paper, but anyone familiar with the analogous Research Excellence Framework will know how time-consuming and, frankly, ineffective this can be, and I’m concerned more time will be dedicated to box-ticking exercises than providing good quality teaching.

Luckily, it seems like the government are listening to the concerns raised about the TEF, and will be piloting the scheme before enforcing it on all universities. A big concern among current and prospective students is that good TEF results will allow universities to continue raising tuition fees. This might be off-putting to potential chemistry undergraduates, and we might see numbers start to drop.

The good news is that it looks like research funding is going to be protected and still decided by peer review. This should mean that funding still reaches chemists who really deserve it.


New Ruthenium Catalyst Boosts Borane Fuel Cells


Ammonia borane, H3NBH3, has been pegged as an ideal fuel cell material due to its very high hydrogen density (19.6 %). However, so far it has failed to perform as well as expected, as the release of hydrogen leads to the formation of borazine, which is resistant to further hydrogen release and can deactivate the catalyst used in this reaction. Therefore, very few systems have been developed which produce more than 2 equivalents of hydrogen from ammonia borane.

A team of scientists from the University of South Carolina may have solved this problem, using a novel ruthenium catalyst which not only catalyses the release of 2.7 equivalents of hydrogen, but which can dehydrogenate the borazine formed, eliminating it from the system. This has not been achieved for any of the high-performing catalysts reported to date. This catalyst is able to polymerise the borazine to polyborazylene, liberating hydrogen in the process.

This result is big news for the hydrogen fuel cell area, especially as this catalyst is air and moisture tolerant, is reusable and requires low catalytic loadings. The utilisation of ammonia borane as a hydrogen fuel source may finally become a reality through technologies like this.

This work was published in Dalton Transactions in March 2016, and can be found online here.


CV of Failures

Today, I came across this blog post on the Nature Jobs website, which I think makes an excellent point. Being in research myself, I am more than aware of the number of failures scientists can go through in their career – not only failed experiments, but rejected papers, grant proposals, fellowship/PhD/job applications, the list goes on.

We’re constantly pressured to hide our failures and focus on the successes, even though they may make up a tiny fraction of our efforts. As Melanie Stefan, author of the blog post, writes: “At conferences, I talk about the one project that worked, not about the many that failed” – and this is the truth for the majority of researchers. Not only in presentations, but in journal articles, PhD theses and CVs, we embellish the few successes as much as physically possible, and sweep any failures under the carpet, regardless of how much work and time went into them.

Indeed, I a fellow PhD student in my year isn’t including any of the work he carried out in the first 2.5 years of his research, as it didn’t yield any results he feels are worth discussing. I think this is a terrible shame. Yes, his work wasn’t successful, but isn’t this a result in itself? Shouldn’t the scientific community know that his methodology isn’t fruitful, so that it may be worked upon and improved? Furthermore, shouldn’t his hard work be recognised and praised? Unfortunately, as scientists we’re conditioned to hide our failures and pray for a success we can cling onto.

This is where the idea of a “CV of Failures” comes in. Melanie hits the nail on the head when she says “As scientists, we construct a narrative of success that renders our setbacks invisible both to ourselves and to others. Often, other scientists’ careers seem to be a constant, streamlined series of triumphs. Therefore, whenever we experience an individual failure, we feel alone and dejected.”

It is so true. We go to conferences and assume that other students are sailing through their PhDs on a stream of non-stop successes, whilst we’re floundering in mixed, confusing results. New academics come into the department with what appear to be flawless careers histories of top-notch publications and seamless shifts into new positions. However, we should know that this isn’t the case. The success rates for fellowships and lectureships are extremely low, and it is highly unlikely that other researchers haven’t faced the same rejections that you yourself are currently experiencing. Unfortunately, we hide this, and feel we need to put out a sheen of non-stop success on our CVs.

Melanie suggests that we try to change this – by cataloging our rejections and struggles into a CV of failures. Not only will this give credit to the hours of effort and work which would be lost to our memories otherwise, but it can show other researchers that none of us are perfect. No one goes through their scientific career without a single failure, and maybe it’s about time we shared them with each other and inspired one another to shake off our rejections and keep heading towards success.


R.I.P. Harry Kroto (1939-2016)

What sad news. The discovery of C60 was game-changing, and I remember doing a piece of work on it during my undergraduate degree.

In the Dark


I heard earlier this afternoon of the death at the age of 76 of the distinguished chemist Sir Harry Kroto.

Along with Robert Curl and Richard Smalley, Harry Kroto was awarded the Nobel Prize for Chemistry in 1996 for the discovery of the C60 structure that became known as Buckminsterfullerene (or the “Buckyball” for short).

Harry had a long association with the University of Sussex and was a regular visitor to the Falmer campus even after he moved to the USA.

I remember first meeting him in the 1988 when, as a new postdoc fresh out of my PhD, I had just taken over organising the Friday seminars for the Astronomy Centre. One speaker called off his talk just an hour before it was due to start so I asked if anyone could suggest someone on campus who might stand in. Someone suggested Harry, whose office was nearby in the…

View original post 195 more words