Toxicity is a hazardous waste

Today I came across an opinion article in Chemistry World which highlights what I believe is a very important issue – chemists today are not being properly trained and prepared in reducing toxicity in their methods.

Now, this isn’t only an issue for the green chemists out there – as chemistry undergraduates and postgraduates we’re often completely unaware of how significant the toxicity of solvents, reagents and products are further down the development pipeline of a new material. We’re simply overjoyed if we manage to make the product we’ve been working on for months, and we’re thrilled if it exhibits the properties we’ve been hoping for, such as cancer killing activity. Never do we step back and consider the carcinogenic chloroform we carried out a work-up with, or the explosive starting materials which couldn’t possibly be used on an industrial scale.

And, why would we? I personally only remember the reduction of toxicity being mentioned in specific green/environmental chemistry modules I chose as an undergraduate, which often leads students to only considering these issues in this context. It’s a green chemistry issue, not one to think about in every day synthetic laboratory work, right? I have come across some of these issues in my PhD, as its industrially funded, so I have some appreciation of what solvents might not be desirable/scaleable, but this has only been mentioned in passing, and I’ve had no formal training in this area.

It’s a common problem throughout chemistry degrees/PhDs, which his highlighted throughout this article. Newly trained chemists give very little thought to the toxicity issues of their work and, crucially, it isn’t instilled in them by their professors or supervisors that they should be. Indeed, many supervisors are more interested in results which they can publish than whether or not their methodology would be commercially viable. However, when these students venture out of academia into the world of industry, this is something they’ll very much have to be aware of, and this knowledge would be extremely useful if taught beforehand.

Unless we want to hide in academia forever, it’s about time we opened our eyes to how our chemistry might affect the real world, and whether the work we’re carrying out would be remotely industrially viable. If we came together with engineers, process chemists and industrial chemists, we could all save ourselves valuable time, energy and resources by knowing what our final goals really are.

Of course, chemistry for the sake of chemistry is still something I advocate – we always need to learn more about the world around us – but, if we’re going to have a grand goal for our research, we need to take a step back and no our limits right from the beginning. Only then, will we reach a conclusion everyone can benefit from.

Advertisements
Standard

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s